ENERGY Audit – Commercial Premises

By

Ravindra M Datar Senergy Consultants (P) Ltd

91-9821271630 ravi@senergy.co.in www.senergy-india.com

Synergy between

Our expertise on conservation of energy

&

Your experience & knowledge of process, operations, plant engineering, etc. To

Save Energy

- Leading Energy Conservation Consultants in India
- Conducting Energy Conservation Studies for past 25 years.
- Team of experts headed by a technocrat from IIT
- Customer driven company with many repeat orders & orders form group companies
- Among of the first to receive ISO 9001-2000 certification.
- Lead Auditor ISO 50001, Energy Management System

- Empanelled with Maharashtra & Gujarat Governments (MEDA & GEDA)
- BEE Certified & Accredited Auditors
- Over 1,000 clients in diversified fields including Power Plants, Ferrous & non-ferrous, Chemical, Pharmaceutical, Textile, Pulp & Paper, Engineering, Automobiles, Hotels, Hospitals & Commercial Premises
- Instrumental towards energy saving of Rs 75 crores/year

- Interactive studies.
- Practical & Realistic Suggestions.
- Turnkey Consultancy during Implementation.
- Long term services for Sustainable Savings & Continuous Improvements.
- Basic & Advanced Training Programs.

Few of our clients

- Hindustan Zinc Ltd
- Sterlite Industries Ltd
- Grasim Industries Ltd
- Excel Industries Ltd
- Century Enka Ltd
- Century Rayon
- Asian Heart Hospital
- Essel World
- EBG India Pvt Ltd
- Sandoz Ltd
- Wartsila Industries Ltd
- PepsiCo India Ltd
- USV Ltd
- Jindal Saw Ltd

- United Nations Industrial Development Organization – UNIDO Allana Industries Ltd
- Tata Chemicals Ltd
- Schenectady Herdillia ltd
- Hindustan Lever Ltd
- Nicolas Piramal India Ltd
- NOCIL Ltd
- DGP Hinoday Ltd
- Tata Metalliks Ltd
- Ultratech Ltd
- Whirlpool of India Ltd
- Pidilite Industries Ltd
- Sachivalay Gujarat
- Wockhardt Ltd
- Clarient Chemicals (India) Ltd

Instruments

- Ultrasonic non-contact type flow meters for liquid
- Ultrasonic non-contact type Energy (kCal/hr, TR) flow meter for liquid
- Power & Harmonic analyzers
- Clamp-on type power / energy meters
- Thermal Imager
- Anemometers to measure velocity of gases
- Digital Manometers & Pressure Gauges
- Digital thermometers for liquid / surface temperature
- Environment Meter for Lux, Temperature, RH, Sound & CO₂
- Combustion Gas Analyzer
- Pressure Gauges
- Digital Hygro-temp Meter (for Temp & RH measurement)

Energy Audit – Scope

- Analysis of specific energy consumption overall & major equipment
- Evaluation of electricity / fuel bill
- Energy Balance for Air Conditioning System
- Power Quality & Harmonic Analysis
- Thermal Imaging of Electrical System
- Performance of major equipments like Refrigeration & Air Conditioning System, Pumps, Cooling Towers, Fans & Blowers
- Illumination & Indoor Air Quality
- Study of distribution system
- Effectiveness of energy utilization
- Renewable Energy
- Identification of potential saving areas
- Suggestions & Recommendation

Specific Energy Consumption

Specific Energy: Energy consumed per unit area.

It is the Key performance assessment tool for every energy consumer.

Collect the following data on monthly basis & for last 12 month

- Total Built up Area
- Power consumption SEB & Captive
- Consumption of each type of fuel
- Cost of each type of fuel
- Outcome:
- Analysis for deviation
- Comparison the values against the benchmark values

Specific Energy Consumption (kWh/M²/Month)

Analysis of Energy Bills

- **Electricity Bill**
- Power Factor
- Load Factor
- Time of Day
- Demand Management
- Fuel Bill
- Possibility of replacing cheaper source of energy
- Outcome
- Optimizing purchase cost of energy

Power Quality & Harmonic Analysis

Logging of electrical parameters of individual phases

- Voltage, Current, Power Factor and Power real, active and reactive
- Current harmonics Total (THD) as well as 3rd, 5th, up to 23rd
- Voltage harmonics Total (THD) as well as 3rd, 5th, up to 23rd

Outcome

- Phase Imbalance in electrical parameters including current, voltage
- Harmonic distortion in current as well as voltage wave forms
- Loading profile over a period of time

The purpose is to identify power quality and harmonic issues; the correct actions would improve power quality but may not necessarily result in energy saving.

Consumption Profile – 24 hr

Current Harmonics

Thermal Imaging of Electrical System

Measure

- Temperature profile of electrical panels / connections with Thermal Imager Camera
- Outcome
- Identification of Hot Spots

The purpose is to identify hot spot due to localized heating; which could lead to failure / accidents. The corrective actions would ensure safe operation but may not necessarily result in energy saving.

Thermal Imaging of Electrical System

Energy Accounting

- Prepare break up of energy consumption by
 - Computing consumption of the respective area / equipment.
 - Noting down operating period.
 - Take data from various sub-meters
 - Logging the data for predetermined period
- Compare total consumption as estimated above with actual consumption to ascertain
 - "Unaccounted" or "Miscellaneous" portion of the consumption
- Analyze consumption pattern

Energy Accounting / Balancing

Refrigeration Compressors

Measure

- Velocity of liquid to determine flow rate through chiller
- Differential Temperature across chiller
- Power drawn by compressor motor
- Note down Motor Efficiency, Specific gravity and Specific heat of Liquid, Speed of Compressor

Outcome

- Operating capacity & Specific Power Consumption
- Recommended Specific Power at operating / design parameters
- Steps to achieve the recommended / design parameters
- Potential saving with cost benefit analysis

Refrigeration Compressors

Sr	Description	ChWC – 11		
No		100 TR		
1	Start Time	January 1 st , at 20:00 Hr		
2	End Time	January 2 nd , at 20:00 Hr		
3	Duration	24 Hours		
4	Inlet Temperature	13.0 °C		
5	Outlet Temperature	12.2 °C		
6	Flow Rate	80.4 M ³ /hr		
7	Refrigeration Load - Maximum	83.6 TR 83.6% of Rated		
8	Refrigeration Load - Average	33.8 TR 33.8% of Rated		
9	Power Consumption – Average	19.4 kW		
10	Specific Power Consumption – Average	0.943 kWh/TR		
11	Refrigeration Compressor – On duration	60.4%		
12	Average output of Refrigeration	20.46 TR 20.5% of Rated		
	Compressor			

Ductable Split AC Units – Water cooled

Drop

Actual Output TR

TAG No

Ductable Split AC Units – Water cooled

Specific Power Consumption

Loss

Desired Sp Power

3.5 3 2.5 Sp Power (kWh/TR) 2 1.5 1 0.5 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 1 2 3 4 5 6 7 8 9

Pumps

Measure

- Velocity of liquid to determine flow rate
- Differential Pressure
- Power drawn by motor
- Note down Motor Efficiency and Specific gravity of Liquid
- Outcome
- Present pump efficiency
- Operating parameters Flow, differential head and power.
- Recommended Efficiency at Operating parameters
- Steps to achieve the recommended parameters
- Potential saving with cost benefit analysis

Pumps

Description	Units	WC-1 - M-1	WC-1 - M-2	WC-1 - M-3	WC-1 - M-4			
Actual Parameters								
Cost of Power	Rs/kWh	2.56	2.56	2.56	2.56			
Operation	Hr/day	24	24	24	24			
	Day/Year	360	360	360	360			
Flow rate	M3/hr	878	917	865	898			
Differential Head	М	33	33	34	33			
Motor Power	kW	140	124	155	145			
Pump Efficiency	%	63%	74%	57%	62%			
Recommended Parameters								
Head	М	34	34	34	34			
Flow rate	M3/hr	900	900	900	900			
Pump Efficiency	%	85%	85%	85%	85%			
Shaft Power	Bkw	98.1	98.1	98.1	98.1			
Motor Power	kW	109.0	109.0	109.0	109.0			
Economics								
Loss	kW	31.0	15.0	46.0	36.0			
	kWh/year	267911	129671	397511	311111			
	Rs/year	685851	331957	1017627	796443			

Illumination & Indoor Air Quality

- Illumination Level
- Temperature
- Relative Humidity (RH)
- Carbon dioxide (CO₂) contents

Illumination Level

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93

1400

Temperature ^o C

30

Carbon Dioxide

Installed Power Density

Installed Load Efficiency Ratio

70%

Distribution System

- Heat Ingress Cold Insulation, Openings in AC area
- Leakages Compressed Air
- Pressure Drop Pumping Systems, Compressed Air
- Power Loss Electrical Systems & Cabling

Utilization

- Over / Under Sized Equipment
 - Pumps, refrigeration compressors, cooling towers
- High Grade Energy for Low Grade Applications
 - Compressed air for cleaning, brine in place of chilled water
- Unwarranted & Rigid Specifications.
 - Stringent hall Conditions, air conditioning / lighting in unoccupied area

Recovery of Waste Energy

- Recovery from Hot / Cold Effluent
 - Preheat water or process fluid, Precool fresh air

Cost of Energy

- Avail Maximum Tariff Concessions & Benefits
 Unity PF, Night Operation, Bulk Discount, Bulk Purchases
- Switchover to cheaper Fuel
 - Electrical to fuel (LPG / HSD / Biofuel) heating / solar system, heat pump and/or de-superheater for hot water
- Power Exchange
 - Procuring power through power exchange

Renewable Energy

- Solar Heating Applications up to 80 °C
- Solar Photovoltaic

Thank

You!